14 GAS CHROMATOGRAPHY Page 1 of 7			
Division of Forensic Science	Amendment Designator:		
CONTROLLED SUBSTANCES TRAINING MANUAL	Effective Date: 8-December-2003		

14 GAS CHROMATOGRAPHY

14.1 Objectives

- 14.1.1 To familiarize the trainee with the theory and application of gas chromatography in drug analysis
- 14.1.2 To familiarize the trainee with the GC instrumentation and software used in the laboratory

14.2 Modes of Instruction

- 14.2.1 Self-directed study through reading assignments
- 14.2.2 Presentations and demonstrations
- 14.2.3 Study questions
- 14.2.4 Practical exercise

14.3 Reference

- 14.3.1 Moffat, A. C., editor. *Clarke's Isolation and Identification of Drugs*. London: The Pharmaceutical Press, 1986, pp. 178-200.
- 14.3.2 *Basic Training Program for Forensic Chemists*, U.S. Department of Justice, Drug Enforcement Adminstration, Office of Science and Technology, pp. 5-31 through 5-47.
- 14.3.3 DFS Controlled Substances Procedures Manual, Gas Chromatography Section.
- 14.3.4 Stafford, David T., Ph.D. "Forensic Capillary Gas Chromatography", in Saferstein, Richard, Ph.D., editor. *Forensic Science Handbook, Volume II.* Englewood Cliffs, N. J.: Prentice Hall, 1988, pp. 38-67.
- 14.3.5 Hyver, K.J., Sandra, P., editor. *High Resolution Gas Chromatography, Third Edition.* Hewlett Packard Company, 1989.
- 14.3.6 Rood, Dean, *A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary Gas Chromatographic Systems, 3rd ed.*, Wiley-VCH, New York, 1999.
- 14.3.7 Regis Chemical Company. *A User's Guide to Chromatography*. Morton Grove, IL: Regis Chemical Company, 1976, pp. 20-114.
- 14.3.8 Hewlett Packard and Agilent Technologies GC instrument manuals.
- 14.3.9 Pierce, A. E., Silylation of Organic Compounds, Pierce Chemical Company, Rockford, IL 1968.

14.4 Assignments

- 14.4.1 Completion of required reading assignments (14.3.1, 14.3.3)
- 14.4.2 Study questions and practical exercises

14.5 Study Questions

14.5.1 What is gas chromatography?

14 GAS CHROMATOGRAPHY	Page 2 of 7		
Division of Forensic Science	Amendment Designator:		
CONTROLLED SUBSTANCES TRAINING MANUAL	Effective Date: 8-December-2003		

- 14.5.2 What types of information are obtained from GC?
- 14.5.3 Draw a schematic diagram for a GC and describe the purpose of each component.
- 14.5.4 Define the following terms:
 - Resolution
 - Carrier gas
 - Mobile phase
 - Stationary phase
 - Partition
 - Volatility
 - Distribution coefficient
 - Retention time
 - Retention index
 - Linear velocity
 - Flow rate
 - Injection port
 - Flame ionization detector
 - Derivatization
 - Internal standard
- 14.5.5 Describe the differences between the solid support used in packed columns and that used in a capillary column GC system.
- 14.5.6 What general criteria should all stationary phases possess? How do they differ between packed and capillary systems?
- 14.5.7 What general criteria should all mobile phases possess?
- 14.5.8 Besides the stationary phase, what factors influence column selection for a given GC application?
- 14.5.9 What determines the appropriate column diameter for a given GC system? The appropriate length? Why are packed column lengths limited to a maximum of 3 meters?
- 14.5.10 Describe how the following concepts affect GC separation between components:
 - Solubility
 - Boiling point
 - Intermolecular forces
- 14.5.11 Describe the following types of capillary columns:
 - SCOT
 - WCOT
 - Fused Silica
- 14.5.12 What factors influence the "inertness" of a column?
- 14.5.13 What is the purpose of the polyimide/polyamide coating on a fused silica column?
- 14.5.14 What is the difference between a bonded and a cross-linked phase? What advantages does a bonded/cross-linked phase column possess?

14 GAS CHROMATOGRAPHY Page 3 of 7 Division of Forensic Science Amendment Designator: CONTROLLED SUBSTANCES TRAINING MANUAL Effective Date: 8-December-2003

- 14.5.15 How are packed columns or liners deactivated after installation? How does it work?
- 14.5.16 What is column bleed?
- 14.5.17 When and why are columns conditioned? Describe the process.
- 14.5.18 What factors govern the operating temperature of a given GC column? What are the upper and lower temperature limits for the following liquid phases? What is the effect of operating above or below these limits?
 - SE-30
 - Carbowax (both bonded and non-bonded)
 - HP-1 (for capillary columns)
 - HP-5 MS (for capillary columns)

14.5.19 Define:

- retention time (T_R or tR),
- relative retention time (RRT),
- retention volume,
- unretained retention time (t_m)
- corrected or adjusted retention time (t'_R or t'R)
- phase ratio (β)
- selectivity (α)
- 14.5.20 Define partition coefficient (K)? What is it a function of? How does it relate to equilibrium? What is meant if K = 1?
- 14.5.21 What is the partition ratio/capacity ratio (k)? How does it relate to retention time?
- 14.5.22 Define the following:
 - theoretical plate (n)?
 - effective theoretical plate (N)?
 - theoretical plate height /height equivalent to a theoretical plate (H or HETP)
 - height equivalent to an effective theoretical plate (H or HEETP)
 - average linear gas velocity (μ)
 - 14.5.22.1 What is a good value for the HETP? And why?
 - 14.5.22.2 How is the # of N related to column efficiency?
- 14.5.23 Define Resolution (R).
 - 14.5.23.1 What is chromatographic resolution a function of?
 - 14.5.23.2 Why is resolution not the best measure of column efficiency and column performance?
- 14.5.24 Discuss the effects of column i.d. and stationary phase film thickness with respect to sample capacity, column efficiency, relative retention times and resolution.
- 14.5.25 Diagram and explain the Van Deemter plot. Why does the drug lab use Helium as a carrier gas?
- 14.5.26 What two factors influence the relative retention time of two components?

14 GAS CHROMATOGRAPHY Page 4 of 7 Division of Forensic Science Amendment Designator: CONTROLLED SUBSTANCES TRAINING MANUAL Effective Date: 8-December-2003

- 14.5.27 What is the Kovats retention index (I)? What does it mean if I = 650?
- 14.5.28 Define Separation Number/Trennzahl Number (TZ). What does it mean if TZ = 3?
- 14.5.29 What affect do the following have on retention time:
 - Concentration
 - Other compounds in the sample
 - Free base/acid form vs. salt form
- 14.5.30 What should be the minimum retention time of the first eluting component in a sample of one or more components to insure the sample has spent enough time in the liquid phase to achieve reasonable separation?
- 14.5.31 Discuss the relationship between geometry, pressure drop, column capacity, resolution, sensitivity, speed and column bleed with respect to capillary columns and their packed column counterparts.
- 14.5.32 Discuss the sample introduction of gases and vapors, volatile liquids and solids into a GC.
- 14.5.33 What is meant by flash vaporization?
- 14.5.34 Describe the proper manual injection technique.
- 14.5.35 What factors govern the amount of sample to be injected? How much sample/component can the average capillary column hold? What factors influence this?
- 14.5.36 What temperature should the injection port be under normal circumstances and why?
- 14.5.37 What type of septa are recommended for GC work and why?
- 14.5.38 What are the differences and purposes of "split" injection, "splitless" injection, "on-column" injection, and "direct-on-column" injection?
- 14.5.39 What is an injection port liner? What is it made of? Why is it used? Describe the packing process including the materials used.
- 14.5.40 What is a "split ratio" and how is it calculated?
 - 14.5.40.1 What factors govern the use of a particular split ratio (100:1 vs. 50:1)?
 - 14.5.40.2 What is meant by linear split, why is it desirable and how is it achieved?
- 14.5.41 Describe the "solvent effect"?
 - 14.5.41.1 How is it done and why is it important?
 - 14.5.41.2 What factors affect the efficiency of the solvent effect?
 - 14.5.41.3 Define the solvent effect with respect to the equation $K = \beta k$.
- 14.5.42 What is meant by "cold trapping" and how is it done?
- 14.5.43 Why is it necessary to regulate the carrier gas flow?
 - 14.5.43.1 How is this done?

14 GAS CHROMATOGRAPHY Page 5 of 7			
Division of Forensic Science	Amendment Designator:		
CONTROLLED SUBSTANCES TRAINING MANUAL	Effective Date: 8-December-2003		

- 14.5.43.2 What factors influence the optimum flow rate for a given carrier gas?
- 14.5.43.3 If the carrier gas is too fast or too slow how will it affect the peak shapes of your sample components?
- 14.5.43.4 How will it affect the detector?
- 14.5.44 Discuss the various detector types (especially Thermal Conductivity, Flame Ionization (FID) and Electron Capture) with respect to the following:
 - How does each work?
 - Carrier gas requirements
 - Sensitivity
 - Temperature requirements
 - Stability
 - Insensitivities
 - Advantages/disadvantages with respect to organic drug analysis
- 14.5.45 What is "make-up" gas?
 - 14.5.45.1 How and why is it used?
 - 14.5.45.2 What determines which gas will be used as a make-up gas?
- 14.5.46 Explain the following statement: "response is proportional to the number of carbon atoms in the sample".
 - 14.5.46.1 What type(s) of detector is this statement applicable to?
 - 14.5.46.2 What is meant by "mass-flow" detector?
- 14.5.47 What is an attenuator and how and why is it used? Is it linear?
- 14.5.48 What is a recorder and how does it differ from currently used data acquisition devices?
- 14.5.49 What types of compounds should be included in a test mixture used to assess chromatographic performance? Why would these compounds be included and what would each be designed to evaluate?
- 14.5.50 What types of GC's (model, manufacturer, etc.) does the drug laboratory use?
 - 14.5.50.1 What types of injection ports, carrier gases, flows, columns and detectors does each GC incorporate?
 - 14.5.50.2 What type of integrator (s) does the drug laboratory use? Are they mechanical or electronic?
- 14.5.51 Outline a logical troubleshooting schematic for isolating the source of a GC system problem.
- 14.5.52 What three things can cause insufficient gas flow through a GC system?
- 14.5.53 Describe how to change the septum on each of the GC's.
 - 14.5.53.1 What are some of the problems encountered when a septum is too tight or too loose?
- 14.5.54 What are some of the common causes and remedies for the following GC system problems:
 - No peaks

14 GAS CHROMATOGRAPHY	Page 6 of 7	
Division of Forensic Science	Amendment Designator:	
CONTROLLED SUBSTANCES TRAINING MANUAL	Effective Date: 8-December-2003	

- Solvent peak only
- Baseline drift or unstable baseline
- Ghost peaks
- Tailing peaks
- Leading peaks
- Split peaks
- Baseline rise before or after a peak
- Baseline drop after a peak
- Retention time shift
- 14.5.55 Describe the preventative maintenance schedule and QA/QC procedures performed on the GC's.
- 14.5.56 Discuss the operation of an autosampler.
- 14.5.57 What is "needle discrimination" and how is it corrected?
- 14.5.58 What is gas saver and how is it used?
- 14.5.59 What is EPC? Explain the difference between constant flow and constant pressure.
- 14.5.60 Draw a diagram of the injection port and illustrate the carrier gas flow throughout for both split and splitless injections.
- 14.5.61 Explain how derivatization is performed, including why it is used sometimes for analysis.
- 14.5.62 Describe the internal standard method of quantitation. How accurate is the method generally?
- 14.5.63 What is the mathematical formula for calculating purity? Define each variable.
- 14.5.64 If two drug compounds were to co-elute on the GC, what could be done to resolve the peaks?
- 14.5.65 Explain as to a jury how a GC operates.

14.6 Practical Exercise

- 14.6.1 Write a method for the GC which creates a program which will perform the following:
 - Injector and detector temperatures: 280°C
 - Oven temperature: 150-250°C, 10°C per minute, initial hold of 2 minutes
 - Total run time: 20 minutes
 - Split ratio: 50:1
 - Column flow rate: 1 mL/min
 - 14.6.1.1 Now inject a mixture of cocaine and propoxyphene and see if the two compounds resolve. If not, change the method one parameter at a time until they are resolved.
- 14.6.2 Inject the following standards on the GC and describe their peak shapes:
 - Amphetamine sulfate in CHCl₃
 - Amphetamine base in CHCl₃
 - Flash-derivatized amphetamine acetate in CHCl₃
- 14.6.3 Perform the derivatization procedure for the differentiation of d- and l- methamphetamine as outlined in the Virginia Division of Forensic Science Drug Analysis Procedures Manual.

	14 GAS CHROMATOGRAPHY	Page 7 of 7	
Division of Forensic Science CONTROLLED SUBSTANCES TRAINING MANUAL		Amendment Designator:	
		Effective Date:	8-December-200
14.6.4	Obtain an unknown sample of cocaine or heroin from the TC and perfo	rm a quantitative analys	sis.
7 Mode	s of Evaluation		
14.7.1	Written examination		
14.7.2	Court exercise (mini-mock trial)		
			♦ E